Spatial learning and memory deficits induced by prenatal glucocorticoid exposure depend on hippocampal CRHR1 and CXCL5 signaling in rats

Author:

Zheng You,Zhang Yan-Min,Tang Zheng-Shan,Du Jian-Kui,Guo De-Wei,Xu Yong-Jun,Sheng Hui,Lu Jian-Qiang,Ni XinORCID

Abstract

Abstract Background Prenatal synthetic glucocorticoid (sGC) exposure increases the susceptibility to cognitive and affective disorders in postnatal life. We previously demonstrated that prenatal sGC exposure results in an increase in corticotropin-releasing hormone (CRH) receptor type 1 (CRHR1) expression in the hippocampus of rats, and CRHR1 is involved in synapse formation via regulation of C-X-C chemokine ligand 5 (CXCL5) in hippocampus. We sought to investigate that the roles of CRHR1 and CXCL5 in learning and memory impairment caused by prenatal sGC exposure. Methods Pregnant rats were administered with saline or dexamethasone (DEX) from gestational day (GD) 14 to GD21. DEX offspring at 2-day old were treated with saline and CRHR1 antagonists (antalarmin and CP154526) for 7 days. Some DEX offspring received intra-hippocampal injection of AAV9 carrying CXCL5 gene. Spatial learning and memory was assessed by Morris water maze test. Immunofluorescence analysis was applied to show synapsin I and PSD95 signals in hippocampus. Synapsin I and PSD95 protein level and CXCL5 concentration were determined by western blotting and ELISA, respectively. Organotypic hippocampal slice cultures were used to investigate the effect of DEX on CXCL5 production in vitro. Results Both male and female DEX offspring displayed impairment of spatial learning and memory in adulthood. Synapsin I and PSD95 signals and CXCL5 levels were decreased in DEX offspring. DEX offspring with antalarmin and CP154526 treatment showed improved spatial learning and memory. Antalarmin and CP154526 treatment increased synapsin I and PSD95 signals and CXCL5 concentration in hippocampus. Bilaterally hippocampal injection of AAV9 carrying CXCL5 gene improved the spatial learning and memory and increased CXCL5 concentration and synapsin I and PSD95 levels in hippocampus. DEX dose-dependently suppressed CXCL5 production in cultured hippocammpal slices, which was prevented by antalarmin treatment. Conclusion CRHR1 and CXCL5 signaling in the hippocampus are involved in spatial learning and memory deficits caused by prenatal DEX exposure. CRHR1 activation contributes to decreased CXCL5 production in hippocampus induced by prenatal DEX treatment. Our study provides a molecular basis of prenatal GC exposure programming spatial learning and memory.

Funder

Key Technologies Research and Development Program

Major International Joint Research Programme

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Hunan Provincial Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3