Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: a multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge
-
Published:2023-11-21
Issue:1
Volume:20
Page:
-
ISSN:1742-2094
-
Container-title:Journal of Neuroinflammation
-
language:en
-
Short-container-title:J Neuroinflammation
Author:
Cousins Oliver,Schubert Julia J.,Chandra Avinash,Veronese Mattia,Valkimadi Polena,Creese Byron,Khan Zunera,Arathimos Ryan,Hampshire Adam,Rosenzweig Ivana,Ballard Clive,Corbett Anne,Aasland Dag,Velayudhan Latha,O’Neill Michael,Collier David,Awais Ramla,Sander Kerstin,Årstad Erik,Howes Oliver,Turkheimer Federico,Hodges Angela
Abstract
Abstract
Background
Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer’s disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer’s disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile.
Methods
We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype.
Results
Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores.
Conclusions
TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer’s disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer’s disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer’s disease should aim to enhance protective microglial actions.
Funder
Innovative Medicines Initiative 2 Joint Undertaking
National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London
MRC Proximity to Discovery: Industry Engagement Fund (External Collaboration, Innovation and Entrepreneurism: Translational Medicine in Exeter 2
NIHR Collaboration for Leadership in Applied Health Research and Care South West Peninsula
National Institute for Health Research University College London Hospitals Biomedical Research Centre. A partnership between UCL and University College London Hospitals NHS Foundation Trust
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference87 articles.
1. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359–69.
2. Hodges AK, Piers TM, Collier D, Cousins O, Pocock JM. Pathways linking Alzheimer’s disease risk genes expressed highly in microglia. Neuroimmunol Neuroinflamm. 2021;8:245–68.
3. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.
4. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176.
5. Lee CY, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna). 2010;117:949–60.