Author:
Grovola Michael R.,von Reyn Catherine,Loane David J.,Cullen D. Kacy
Abstract
AbstractTraumatic brain injury (TBI) often results in prolonged or permanent brain dysfunction with over 2.8 million affected annually in the U.S., including over 56,000 deaths, with over 5 million total survivors exhibiting chronic deficits. Mild TBI (also known as concussion) accounts for over 75% of all TBIs every year. Mild TBI is a heterogeneous disorder, and long-term outcomes are dependent on the type and severity of the initial physical event and compounded by secondary pathophysiological consequences, such as reactive astrocytosis, edema, hypoxia, excitotoxicity, and neuroinflammation. Neuroinflammation has gained increasing attention for its role in secondary injury as inflammatory pathways can have both detrimental and beneficial roles. For example, microglia—resident immune cells of the central nervous system (CNS)—influence cell death pathways and may contribute to progressive neurodegeneration but also aid in debris clearance and neuroplasticity. In this review, we will discuss the acute and chronic role of microglia after mild TBI, including critical protective responses, deleterious effects, and how these processes vary over time. These descriptions are contextualized based on interspecies variation, sex differences, and prospects for therapy. We also highlight recent work from our lab that was the first to describe microglial responses out to chronic timepoints after diffuse mild TBI in a clinically relevant large animal model. The scaled head rotational acceleration of our large animal model, paired with the gyrencephalic architecture and appropriate white:gray matter ratio, allows us to produce pathology with the same anatomical patterns and distribution of human TBI, and serves as an exemplary model to examine complex neuroimmune response post-TBI. An improved understanding of microglial influences in TBI could aid in the development of targeted therapeutics to accentuate positive effects while attenuating detrimental post-injury responses over time.
Funder
National Institute of Neurological Disorders and Stroke
Biomedical Laboratory Research and Development, VA Office of Research and Development
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference114 articles.
1. Centers for Disease Control and Prevention. Surveillance report of traumatic brain injury-related emergency department visits, hospitalizations, and deaths-United States, 2014. Centers for Disease Control and Prevention, US Department of Health and Human Services. 2019;24. www.cdc.gov/TraumaticBrainInjury.
2. Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci. 2010;31(12):596–604. https://doi.org/10.1016/j.tips.2010.09.005.
3. Ekmark-Lewén S, Flygt J, Kiwanuka O, Meyerson BJ, Lewén A, Hillered L, et al. Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes. J Neuroinflamm. 2013;10:44.
4. Singleton RH, Povlishock JT. Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci. 2004;24(14):3543–53. https://doi.org/10.1523/JNEUROSCI.5048-03.2004.
5. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(1):28–42.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献