Neuropathological mRNA Expression Changes after Single Mild Traumatic Brain Injury in Pigs

Author:

Grovola Michael R.12ORCID,Cullen D. Kacy123ORCID

Affiliation:

1. Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA

2. Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Traumatic brain injury (TBI) is a public health concern, with an estimated 42 million cases globally every year. The majority of TBIs are mild TBIs, also known as concussion, and result from the application of mechanical forces on the head. Most patients make a complete recovery and mortality is rare; therefore, studies investigating cellular changes after mild TBI in a clinical setting are limited. To address this constraint, our group utilized a pig model of closed-head rotational acceleration-induced TBI, which recreated the biomechanical loading parameters associated with concussion on a large gyrencephalic brain similar to humans. While our previous research has focused on immunohistochemical characterization of neuropathology, the current study utilized transcriptomic assays to evaluate an array of TBI-induced neurodegenerative analytes. Pigs subjected to mild TBI were survived for 3 days post-injury (DPI) (n = 3), 30 DPI (n = 3), or 1 year post-injury (YPI) (n = 3) and compared to animals undergoing a sham procedure (n = 8). RNA was isolated from whole coronal sections of fixed tissue and multiplexed on a Nanostring neuropathology panel. Differential expression analysis revealed 11 differentially expressed genes at 3 DPI versus sham, including downregulation of the synaptotagmin calcium sensor gene (SYT1), upregulation of the neurofibromin gene (NF1), and upregulation of the Alzheimer’s disease-associated receptor gene (SORL1). There were no differentially expressed genes at 30 DPI or 1 YPI compared to shams. Additionally, high-magnitude undirected global significance scores (GSS) were detected at 3 DPI for chromatin modification and autophagy gene sets, and at 30 DPI for cytokine gene sets, while many dysregulated gene sets were highlighted by directed GSSs out to 1 YPI. This study adds to a growing body of literature on transcriptomic changes in a clinically relevant large animal model of closed-head TBI, which highlights potential therapeutic targets following mild TBI.

Funder

Department of Veterans Affairs

National Institutes of Health

Publisher

MDPI AG

Reference66 articles.

1. Centers for Disease Control and Prevention (2024, July 16). Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths-United States, 2014. Centers Dis Control Prev US Dep Heal Hum Serv. 2019, 24, Available online: www.cdc.gov/TraumaticBrainInjury.

2. Epidemiology of mild traumatic brain injury and neurodegenerative disease;Gardner;Mol. Cell. Neurosci.,2015

3. The International Incidence of Traumatic Brain Injury: A Systematic Review and Meta-Analysis;Nguyen;Can. J. Neurol. Sci./J. Can. des Sci. Neurol.,2016

4. The characteristics of patients who do not seek medical treatment for traumatic brain injury;Setnik;Brain Inj.,2007

5. Diagnosis, prognosis, and clinical management of mild traumatic brain injury;Levin;Lancet Neurol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3