Author:
Ni Bowen,Huang Guanglong,Yang Runwei,Wang Ziyu,Song Haimin,Li Kaishu,Zhang Yunxiao,Wu Kezhi,Shi Guangwei,Wang Xiran,Shen Jie,Liu Yawei
Abstract
Abstract
Background
The unique intracranial tumor microenvironment (TME) contributes to the immunotherapy failure for glioblastoma (GBM), thus new functional protein targets are urgently needed. Alternative splicing is a widespread regulatory mechanism by which individual gene can express variant proteins with distinct functions. Moreover, proteins located in the cell plasma membrane facilitate targeted therapies. This study sought to obtain functional membrane protein isoforms from GBM TME.
Methods
With combined single-cell RNA-seq and bulk RNA-seq analyses, novel candidate membrane proteins generated by prognostic splicing events were screened within GBM TME. The short isoform of MS4A7 (MS4A7-s) was selected for evaluation by RT-PCR and western blotting in clinical specimens. Its clinical relevance was evaluated in a GBM patient cohort. The function of MS4A7-s was identified by in vitro and in vivo experiments. MS4A7-s overexpression introduced transcriptome changes were analyzed to explore the potential molecular mechanism.
Results
The main expression product, isoform MS4A7-s, generated by exon skipping, is an M2-specific plasma membrane protein playing a pro-oncogenic role in GBM TME. Higher expression of MS4A7-s correlates with poor prognosis in a GBM cohort. In vitro cell co-culture experiments, intracranial co-injection tumorigenesis assay, and RNA-seq suggest MS4A7-s promotes activation of glioma-associated macrophages’ (GAMs) PI3K/AKT/GSK3β pathway, leading to M2 polarization, and drives malignant progression of GBM.
Conclusions
MS4A7-s, a novel splicing isoform of MS4A7 located on the surface of GAMs in GBM TME, is a predictor of patient outcome, which contributes to M2 polarization and the malignant phenotype of GBM. Targeting MS4A7-s may constitute a promising treatment for GBM.
Funder
Natural Science Foundation of Guangdong Province
Research Initiation Project of Shunde Hospital, Southern Medical University
Shenzhen Science and Technology Innovation Committee
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献