Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs: other regulatory populations are also involved

Author:

Álvarez-Luquín Diana D.,Arce-Sillas Asiel,Leyva-Hernández Jaquelín,Sevilla-Reyes Edgar,Boll Marie Catherine,Montes-Moratilla Esteban,Vivas-Almazán Viridiana,Pérez-Correa Citzielli,Rodríguez-Ortiz Ulises,Espinoza-Cárdenas Raquel,Fragoso Gladis,Sciutto Edda,Adalid-Peralta LauraORCID

Abstract

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world. Various studies have suggested that the immune response plays a key role in this pathology. While a predominantly pro-inflammatory peripheral immune response has been reported in treated and untreated PD patients, the study of the role of the regulatory immune response has been restricted to regulatory T cells. Other immune suppressive populations have been described recently, but their role in PD is still unknown. This study was designed to analyze the pro and anti-inflammatory immune response in untreated PD patients, with emphasis on the regulatory response. Methods Thirty-two PD untreated patients and 20 healthy individuals were included in this study. Peripheral regulatory cells (CD4+Tregs, Bregs, CD8+Tregs, and tolerogenic dendritic cells), pro-inflammatory cells (Th1, Th2, and Th17 cells; active dendritic cells), and classical, intermediate, and non-classical monocytes were characterized by flow cytometry. Plasmatic levels of TNF-α, IFN-γ, IL-6, GM-CSF, IL-12p70, IL-4, IL-13, IL-17α, IL-1β, IL-10, TGF-β, and IL-35 were determined by ELISA. Results Decreased levels of suppressor Tregs, active Tregs, Tr1 cells, IL-10-producer CD8regs, and tolerogenic PD-L1+ dendritic cells were observed. With respect to the pro-inflammatory response, a decrease in IL-17-α and an increase in IL-13 levels were observed. Conclusion A decrease in the levels of regulatory cell subpopulations in untreated PD patients is reported for the first time in this work. These results suggest that PD patients may exhibit a deficient suppression of the pro-inflammatory response, which could contribute to the pathophysiology of the disease.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3