Abstract
Abstract
Background
The cropping area of genetically modified (GM) crops has constantly increased since 1996. However, currently, cultivating GM crops is associated with many concerns. Transgenes are transferred to non-GM crops through pollen-mediated gene flow, which causes environmental problems such as superweeds and introgressive hybridization. Rapeseed (Brassica napus L.), which has many GM varieties, is one of the most crucial oil crops in the world. Hybridization between Brassica species occurs spontaneously. B. rapa grows in fields as a weed and is cultivated as a crop for various purposes. Both B. rapa weeds and crops participate in gene flow among rapeseed. Therefore, gene flow risk and the coexistence of these two species should be studied.
Results
In this study, field experiments were conducted at two sites for 4 years to evaluate gene flow risk. In addition, zero-inflated models were used to address the problem of excess zero values and data overdispersion. The difference in the number of cross-pollination (CP) events was nonsignificant between upwind and downwind plots. The CP rate decreased as the distance increased. The average CP rates at distances of 0.35 and 12.95 m were 2.78% and 0.028%, respectively. In our results, zero-inflated negative binomial models were comprehensively superior to zero-inflated Poisson models. The models predicted isolation distances of approximately 1.36 and 0.43 m for the 0.9% and 3% threshold labeling levels, respectively.
Conclusions
Cultivating GM crops is prohibited in Taiwan; however, the study results can provide a reference for the assessment of gene flow risk and the coexistence of these two species in Asian countries establishing policies for GM crops.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
2. Beckie HJ, Warwick SI, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol Appl 13:1276–1294
3. Bensadoun A, Monod H, Angevin F, Makowski D, Messéan A (2014) Modeling of gene flow by a Bayesian approach: a new perspective for decision support. Ag Bio Forum 17:213–220
4. Bensadoun A, Monod H, Makowski D, Messéan A (2016) A Bayesian approach to model dispersal for decision support. Environ Model Softw 78:179–190. https://doi.org/10.1016/j.envsoft.2015.12.018
5. Brookes G, Barfoot P (2016) Global income and production impacts of using GM crop technology 1996-2014. GM Crops Food 7:38–77. https://doi.org/10.1080/21645698.2016.1176817
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献