Using a zero-inflated model to assess gene flow risk and coexistence of Brassica napus L. and Brassica rapa L. on a field scale in Taiwan

Author:

Su Yuan-Chih,Wang Po-Shung,Yang Jhih-Ling,Hong Hong,Lin Tzu-Kai,Tu Yuan-Kai,Kuo Bo-JeinORCID

Abstract

Abstract Background The cropping area of genetically modified (GM) crops has constantly increased since 1996. However, currently, cultivating GM crops is associated with many concerns. Transgenes are transferred to non-GM crops through pollen-mediated gene flow, which causes environmental problems such as superweeds and introgressive hybridization. Rapeseed (Brassica napus L.), which has many GM varieties, is one of the most crucial oil crops in the world. Hybridization between Brassica species occurs spontaneously. B. rapa grows in fields as a weed and is cultivated as a crop for various purposes. Both B. rapa weeds and crops participate in gene flow among rapeseed. Therefore, gene flow risk and the coexistence of these two species should be studied. Results In this study, field experiments were conducted at two sites for 4 years to evaluate gene flow risk. In addition, zero-inflated models were used to address the problem of excess zero values and data overdispersion. The difference in the number of cross-pollination (CP) events was nonsignificant between upwind and downwind plots. The CP rate decreased as the distance increased. The average CP rates at distances of 0.35 and 12.95 m were 2.78% and 0.028%, respectively. In our results, zero-inflated negative binomial models were comprehensively superior to zero-inflated Poisson models. The models predicted isolation distances of approximately 1.36 and 0.43 m for the 0.9% and 3% threshold labeling levels, respectively. Conclusions Cultivating GM crops is prohibited in Taiwan; however, the study results can provide a reference for the assessment of gene flow risk and the coexistence of these two species in Asian countries establishing policies for GM crops.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3