Interspecific Hybridization of Transgenic Brassica napus and Brassica rapa—An Overview

Author:

Sohn Soo-InORCID,Thamilarasan Senthil KumarORCID,Pandian SubramaniORCID,Oh Young-Ju,Ryu Tae-Hun,Lee Gang-SeobORCID,Shin Eun-Kyoung

Abstract

In nature, interspecific hybridization occurs frequently and can contribute to the production of new species or the introgression of beneficial adaptive features between species. It has great potential in agricultural systems to boost the process of targeted crop improvement. In the advent of genetically modified (GM) crops, it has a disadvantage that it involves the transgene escaping to unintended plants, which could result in non-specific weedy crops. Several crop species in the Brassica genus have close kinship: canola (Brassica napus) is an ancestral hybrid of B. rapa and B. oleracea and mustard species such as B. juncea, B. carinata, and B. nigra share common genomes. Hence, intraspecific hybridization among the Brassica species is most common, especially between B. napus and B. rapa. In general, interspecific hybrids cause numerous genetic and phenotypic changes in the parental lines. Consequently, their fitness and reproductive ability are also highly varied. In this review, we discuss the interspecific hybridization and reciprocal hybridization studies of B. napus and B. rapa and their potential in the controlled environment. Further, we address the fate of transgenes (herbicide resistance) and their ability to transfer to their progenies or generations. This could help us to understand the environmental influence of interspecific hybrids and how to effectively manage their transgene escape in the future.

Funder

Agricultural Science and Technology Development

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3