Artificial intelligence and machine learning on diagnosis and classification of hip fracture: systematic review

Author:

Cha Yonghan,Kim Jung-Taek,Park Chan-Ho,Kim Jin-Woo,Lee Sang Yeob,Yoo Jun-Il

Abstract

Abstract Background In the emergency room, clinicians spend a lot of time and are exposed to mental stress. In addition, fracture classification is important for determining the surgical method and restoring the patient's mobility. Recently, with the help of computers using artificial intelligence (AI) or machine learning (ML), diagnosis and classification of hip fractures can be performed easily and quickly. The purpose of this systematic review is to search for studies that diagnose and classify for hip fracture using AI or ML, organize the results of each study, analyze the usefulness of this technology and its future use value. Methods PubMed Central, OVID Medline, Cochrane Collaboration Library, Web of Science, EMBASE, and AHRQ databases were searched to identify relevant studies published up to June 2022 with English language restriction. The following search terms were used [All Fields] AND (", "[MeSH Terms] OR (""[All Fields] AND "bone"[All Fields]) OR "bone fractures"[All Fields] OR "fracture"[All Fields]). The following information was extracted from the included articles: authors, publication year, study period, type of image, type of fracture, number of patient or used images, fracture classification, reference diagnosis of fracture diagnosis and classification, and augments of each studies. In addition, AI name, CNN architecture type, ROI or important region labeling, data input proportion in training/validation/test, and diagnosis accuracy/AUC, classification accuracy/AUC of each studies were also extracted. Results In 14 finally included studies, the accuracy of diagnosis for hip fracture by AI was 79.3–98%, and the accuracy of fracture diagnosis in AI aided humans was 90.5–97.1. The accuracy of human fracture diagnosis was 77.5–93.5. AUC of fracture diagnosis by AI was 0.905–0.99. The accuracy of fracture classification by AI was 86–98.5 and AUC was 0.873–1.0. The forest plot represented that the mean AI diagnosis accuracy was 0.92, the mean AI diagnosis AUC was 0.969, the mean AI classification accuracy was 0.914, and the mean AI classification AUC was 0.933. Among the included studies, the architecture based on the GoogLeNet architectural model or the DenseNet architectural model was the most common with three each. Among the data input proportions, the study with the lowest training rate was 57%, and the study with the highest training rate was 95%. In 14 studies, 5 studies used Grad-CAM for highlight important regions. Conclusion We expected that our study may be helpful in making judgments about the use of AI in the diagnosis and classification of hip fractures. It is clear that AI is a tool that can help medical staff reduce the time and effort required for hip fracture diagnosis with high accuracy. Further studies are needed to determine what effect this causes in actual clinical situations.

Funder

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3