Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study

Author:

Sato YoichiORCID,Takegami Yasuhiko,Asamoto Takamune,Ono Yutaro,Hidetoshi Tsugeno,Goto Ryosuke,Kitamura Akira,Honda Seiwa

Abstract

Abstract Background Less experienced clinicians sometimes make misdiagnosis of hip fractures. We developed computer-aided diagnosis (CAD) system for hip fractures on plain X-rays using a deep learning model trained on a large dataset. In this study, we examined whether the accuracy of the diagnosis of hip fracture of the residents could be improved by using this system. Methods A deep convolutional neural network approach was used for machine learning. Pytorch 1.3 and Fast.ai 1.0 were applied as frameworks, and an EfficientNet-B4 model (a pre-trained ImageNet model) was used. We handled the 5295 X-rays from the patients with femoral neck fracture or femoral trochanteric fracture from 2009 to 2019. We excluded cases in which the bilateral hips were not included within an image range, and cases of femoral shaft fracture and periprosthetic fracture. Finally, we included 5242 AP pelvic X-rays from 4851 cases. We divided these 5242 images into two images per image, and prepared 5242 images including fracture site and 5242 images without fracture site. Thus, a total of 10,484 images were used for machine learning. The accuracy, sensitivity, specificity, F-value, and area under the curve (AUC) were assessed. Gradient-weighted class activation mapping (Grad-CAM) was used to conceptualize the basis for the diagnosis of the fracture by the deep learning algorithm. Secondly, we conducted a controlled experiment with clinicians. Thirty-one residents;young doctors within 2 years of graduation from medical school who rotate through various specialties, were tested using 300 hip fracture images that were randomly extracted from the dataset. We evaluated the diagnostic accuracy with and without the use of the CAD system for each of the 300 images. Results The accuracy, sensitivity, specificity, F-value, and AUC were 96.1, 95.2, 96.9%, 0.961, and 0.99, respectively, with the correct diagnostic basis generated by Grad-CAM. In the controlled experiment, the diagnostic accuracy of the residents significantly improved when they used the CAD system. Conclusions We developed a newly CAD system with a deep learning algorithm from a relatively large dataset from multiple institutions. Our system achieved high diagnostic performance. Our system improved the diagnostic accuracy of residents for hip fractures. Level of evidence Level III, Foundational evidence, before-after study. Clinical relevance: high

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3