Development and validation of an artificial intelligence model for the classification of hip fractures using the AO-OTA framework

Author:

Akbarian Ehsan,Mohammadi Mehrgan,Tiala Emilia,Ljungberg Oscar,Sharif Razavian Ali,Magnéli Martin,Gordon Max

Abstract

Background and purpose: Artificial intelligence (AI) has the potential to aid in the accurate diagnosis of hip fractures and reduce the workload of clinicians. We primarily aimed to develop and validate a convolutional neural network (CNN) for the automated classification of hip fractures based on the 2018 AO-OTA classification system. The secondary aim was to incorporate the model’s assessment of additional radiographic findings that often accompany such injuries.Methods: 6,361 plain radiographs of the hip taken between 2002 and 2016 at Danderyd University Hospital were used to train the CNN. A separate set of 343 radiographs representing 324 unique patients was used to test the performance of the network. Performance was evaluated using area under the curve (AUC), sensitivity, specificity, and Youden’s index.Results: The CNN demonstrated high performance in identifying and classifying hip fracture, with AUCs ranging from 0.76 to 0.99 for different fracture categories. The AUC for hip fractures ranged from 0.86 to 0.99, for distal femur fractures from 0.76 to 0.99, and for pelvic fractures from 0.91 to 0.94. For 29 of 39 fracture categories, the AUC was ≥ 0.95.Conclusion: We found that AI has the potential for accurate and automated classification of hip fractures based on the AO-OTA classification system. Further training and modification of the CNN may enable its use in clinical settings.

Publisher

MJS Publishing, Medical Journals Sweden AB

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3