Author:
Xue Zhihao,Wang Liao,Sun Qi,Xu Jia,Liu Ying,Ai Songtao,Zhang Lichi,Liu Chenglei
Abstract
Abstract
Background
To develop a magnetic resonance imaging (MRI)-based radiomics predictive model for the identification of knee osteoarthritis (OA), based on the tibial and femoral subchondral bone, and compare with the trabecular structural parameter-based model.
Methods
Eighty-eight consecutive knees were scanned with 3T MRI and scored using MRI osteoarthritis Knee Scores (MOAKS), in which 56 knees were diagnosed to have OA. The modality of sagittal three-dimensional balanced fast-field echo sequence (3D BFFE) was used to image the subchondral bone. Four trabecular structural parameters (bone volume fraction [BV/TV], trabecular thickness [Tb.Th], trabecular separation [Tb.Sp], and trabecular number) and 93 radiomics features were extracted from four regions of the lateral and medial aspects of the femur condyle and tibial plateau. Least absolute shrinkage and selection operator (LASSO) was used for feature selection. Machine learning-based support vector machine models were constructed to identify knee OA. The performance of the models was assessed by area under the curve (AUC) of the receiver operator characteristic (ROC). The correlation between radiomics features and trabecular structural parameters was analyzed using Pearson’s correlation coefficient.
Results
Our radiomics-based classification model achieved the AUC score of 0.961 (95% confidence interval [CI], 0.912–1.000) when distinguishing between normal and knee OA, which was higher than that of the trabecular parameter-based model (AUC, 0.873; 95% CI, 0.788–0.957). The first-order, texture, and Laplacian of Gaussian-based radiomics features correlated positively with Tb.Th and BV/TV, but negatively with Tb.Sp (P < 0.05).
Conclusions
Our results suggested that our MRI-based radiomics models can be used as biomarkers for the classification of OA and are superior to the conventional structural parameter-based model.
Funder
the National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献