Affiliation:
1. Department of Radiology Medical College of Wisconsin Milwaukee Wisconsin USA
2. Department of Radiology and Imaging Hospital for Special Surgery New York New York USA
Abstract
AbstractThis study applied radiomics to MRI data for automated classification of soft tissue abnormalities near total hip arthroplasty (THA). A total of 126 subjects with 1.5 T MRI of symptomatic THA were included in the analysis. Peri‐prosthetic soft tissue regions of interest were manually segmented and classified by an expert radiologist. An established radiomics library was used to extract 96 features from 2D image patches across segmented regions. Logistic regression was employed as the primary radiomic classifier, achieving an average area under curve (AUC) of 0.71 in differentiating tissue classifications spanning normal, infected, and several inflammatory, noninfectious categories. Notably, infection cases were identified with the highest accuracy, attaining an AUC of 0.79. Statement of Clinical Significance: This study demonstrates that radiomics applied to MRI data can effectively automate the classification of soft tissue abnormalities in symptomatic total hip arthroplasty, particularly in differentiating periprosthetic infections.
Funder
National Institute of Arthritis and Musculoskeletal and Skin Diseases