Abstract
Abstract
Background
Regarding the repair of vertebral compression fractures, there is a lack of adequate biomechanical verification as to whether only half of the vertebral body and the upper and lower intervertebral discs affect spinal biomechanics; there also remains debate as to the appropriate length of fixation.
Methods
A model of old vertebral compression fractures with kyphosis was established based on CT data. Vertebral column resection (VCR) and posterior unilateral vertebral resection and reconstruction (PUVCR) were performed at T12; long- and short-segment fixation methods were applied, and we analyzed biomechanical changes after surgery.
Results
Range of motion (ROM) decreased in all fixed models, with lumbar VCR decreasing the most and short posterior unilateral vertebral resection and reconstruction (SPUVCR) decreasing the least; in the long posterior unilateral vertebral resection and reconstruction (LPUVCR) model, the internal fixation system produced the maximum VMS stress of 213.25 mPa in a lateral bending motion and minimum stress of 40.22 mPa in a lateral bending motion in the SVCR.
Conclusion
There was little difference in thoracolumbar ROM between PUVCR and VCR models, while thoracolumbar ROM was smaller in long-segment fixation than in short-segment fixation. In all models, the VMS was most significant at the screw-rod junction and greatest at the ribcage–vertebral body interface, partly explaining the high probability of internal fixation failure and prosthesis migration in these two positions.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献