Osteoinductive potential of graphene and graphene oxide for bone tissue engineering: a comparative study

Author:

Kashte Shivaji Bhikaji,Kadam Sachin,Maffulli Nicola,Potty Anish G.,Migliorini FilippoORCID,Gupta AshimORCID

Abstract

Abstract Background Bone defects, especially critical-size bone defects, and their repair pose a treatment challenge. Osteoinductive scaffolds have gained importance given their potential in bone tissue engineering applications. Methods Polycaprolactone (PCL) scaffolds are used for their morphological, physical, cell-compatible and osteoinductive properties. The PCL scaffolds were prepared by electrospinning, and the surface was modified by layer-by-layer deposition using either graphene or graphene oxide. Results Graphene oxide-coated PCL (PCL-GO) scaffolds showed a trend for enhanced physical properties such as fibre diameter, wettability and mechanical properties, yield strength, and tensile strength, compared to graphene-modified PCL scaffolds (PCL-GP). However, the surface roughness of PCL-GP scaffolds showed a higher trend than PCL-GO scaffolds. In vitro studies showed that both scaffolds were cell-compatible. Graphene oxide on PCL scaffold showed a trend for enhanced osteogenic differentiation of human umbilical cord Wharton’s jelly-derived Mesenchymal Stem Cells without any differentiation media than graphene on PCL scaffolds after 21 days. Conclusion Graphene oxide showed a trend for higher mineralisation, but this trend is not statistically significant. Therefore, graphene and graphene oxide have the potential for bone regeneration and tissue engineering applications. Future in vivo studies and clinical trials are warranted to justify their ultimate clinical use. Graphical abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3