In vitro study of foot bone kinematics via a custom-made cadaveric gait simulator

Author:

Zhu Genrui,Wang Zhifeng,Yuan Chengjie,Geng Xiang,Yu Jian,Zhang Chao,Huang Jiazhang,Wang XuORCID,Ma Xin

Abstract

Abstract Background Quantifying detailed kinematics of the intrinsic foot bone during gait is crucial for understanding biomechanical functions of the foot complex musculoskeletal structure and making appropriate surgery decisions. Research question The purpose of this experiment is to measure bone kinematic of the normal foot in a gait cycle via a custom-made cadaveric gait simulator. Methods In this experiment, we used a custom-made 6 degrees of freedom (DOF) of robotic gait simulator simulating normal human gait to measure the 3-dimensional (3D) kinematics of tibia, calcaneus, cuboid, navicular, medial cuneiform, first metatarsal, and fifth metatarsal through six cadaveric feet. Results The results showed that the kinematic of the intrinsic foot bones in the stance phase of the gait was successfully quantified using a custom-made robotic gait simulator. During walking stance, the joints in the medial column of foot had less movement than those in the lateral column. And during the later portion of stance, no rotational cease was observed in the movement between navicular and cuboid, calcaneocuboid joint, or cuneonavicular joint. Conclusion This study described foot bone motion using a biomechanically near-physiological gait simulator with 6 DOF of the tibia. The kinematic data helps to clarify previous descriptions of several joint kinematics that are difficult to study in vivo. The methodology also provides a platform for researchers to explore more invasive foot biomechanics under dynamic and near-physiologic conditions.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3