An in vitro approach to the evaluation of foot-ankle kinematics: Performance evaluation of a custom-built gait simulator

Author:

Peeters Koen1,Natsakis Tassos1,Burg Josefien1,Spaepen Pieter2,Jonkers Ilse3,Dereymaeker Greta1,Vander Sloten Jos1

Affiliation:

1. Biomechanics Section, Mechanical Engineering Department, Faculty of Engineering KU Leuven, Belgium

2. Katholieke Hogeschool Kempen, Geel, Belgium

3. Human Movement Biomechanics Section, Department of Kinesiology, KU Leuven, Belgium

Abstract

Despite their well-known limitations, in vitro experiments have several benefits over in vivo techniques when exploring foot biomechanics under conditions characteristic of gait. In this study, we present a new setup for dynamic in vitro gait simulation that integrates a numerical model for generating the tibial kinematics control input, and we present an innovative methodology to measure full three-dimensional joint kinematics during gait simulations. The gait simulator applies forces to the tendons. Tibial kinematics in the sagittal plane is controlled using a numerical model that takes into account foot morphology. The methodology is validated by comparing joint rotations measured during gait simulation with those measured in vivo. In addition, reliability and accuracy of the control system as well as simulation input and output repeatability are quantified. The results reflect good control performance and repeatability of the control inputs, vertical ground reaction force, center of pressure displacement, and joint rotations and translations. In addition, there is a good correspondence to in vivo kinematics for most patterns of motion at the ankle, subtalar, and Chopart’s joints. Therefore, these results show the relevance and validity of including specimen-specific information for defining the control inputs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3