Real-time fire detection algorithms running on small embedded devices based on MobileNetV3 and YOLOv4

Author:

Zheng Hongtao,Duan Junchen,Dong Yu,Liu YanORCID

Abstract

Abstract Aim Fires are a serious threat to people’s lives and property. Detecting fires quickly and effectively and extinguishing them in the nascent stage is an effective way to reduce fire hazards. Currently, deep learning-based fire detection algorithms are usually deployed on the PC side. Methods After migrating to small embedded devices, the accuracy and speed of recognition are degraded due to the lack of computing power. In this paper, we propose a real-time fire detection algorithm based on MobileNetV3-large and yolov4, replacing CSP Darknet53 in yolov4 with MobileNetV3-large to achieve the initial extraction of flame and smoke features while greatly reducing the computational effort of the network structure. A path connecting PANet was explored on Gbneck(104, 104, 24), while SPP was embedded in the path from MobileNetV3 to PANet to improve the feature extraction capability for small targets; the PANet in yolo4 was improved by combining the BiFPN path fusion method, and the improved PANet further improved the feature extraction capability; the Vision Transformer model is added to the backbone feature extraction network and PANet of the YOLOv4 model to give full play to the model’s multi-headed attention mechanism for pre-processing image features; adding ECA Net to the head network of yolo4 improves the overall recognition performance of the network. Result These algorithms run well on PC and reach 95.14% recognition accuracy on the public dataset BoWFire. Finally, these algorithms were migrated to the Jeston Xavier NX platform, and the entire network was quantized and accelerated with the TensorRT algorithm. With the image propagation function of the fire robot, the overall recognition frame rate can reach about 26.13 with high real-time performance while maintaining a high recognition accuracy. Conclusion Several comparative experiments have also validated the effectiveness of this paper’s improvements to the YOLOv4 algorithm and the superiority of these structures. With the effective integration of these components, the algorithm shows high accuracy and real-time performance.

Funder

Industry university research innovation fund of science and technology development center of the Ministry of Education

Public Welfare Projects in Zhejiang Province

Project of Hangzhou Science and Technology Bureau

the Ministry of Education Industry-University Cooperation Collaborative Education Project

Zhejiang University City College Scientific Research Cultivation Fund Project

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3