Branching out: species-specific canopy architecture limits live crown fuel consumption in Intermountain West USA conifers

Author:

Conrad Elliott T.ORCID,Jolly W. Matt,Brown Tegan P.,Hillman Samuel C.

Abstract

Abstract Background Accurate estimates of available live crown fuel loads are critical for understanding potential wildland fire behavior. Existing crown fire behavior models assume that available crown fuels are limited to all tree foliage and half of the fine branches less than 6 mm in diameter (1 h fuel). They also assume that this relationship is independent of the branchwood moisture content. Despite their widespread use, these assumptions have never been tested, and our understanding of the physiochemical properties that govern live crown flammability and consumption remains limited. To test these assumptions, we sampled branches from 11 common Intermountain West USA conifers and determined the corrected available fuel estimates using physiochemical measurements, diameter subsize class distributions, and a bench-scale consumption experiment. Additional branches were air-dried to explore interaction between moisture content and consumption. Corrected available live crown fuel was compared to existing models across species and then used to determine potential differences in crown fire energy release. Results Across the 11 common conifers, distinct patterns of sub 1 h fuel distributions were strong predictors of whether the existing available live crown fuel models overestimated, approximately correctly estimated, or underestimated available live fuel. Fine branchwood distributions generally fell into three archetypes: fine skewed, normally distributed, and coarse skewed. Based on our corrected estimates, existing models overestimated the potential canopy energy by 34% for an average-sized western larch and underestimated it by 18.8% for western hemlock. The critical fine branchwood consumption diameter varied with species and moisture content. Larger proportions of fine branches were consumed as the branchwood dried, and nearly all the 1 h fuel was consumed when the branches were completely dry. Conclusions These results suggest that available live canopy fuel load estimates should consider species and moisture content to accurately assess and map fuel loads across landscapes. This work has implications for forest and fire management in conifer-dominated forests throughout western North America, and in other similar forests worldwide.

Funder

U.S. Department of Defense

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3