Abstract
Abstract
Background
Wildland fires are fundamentally landscape phenomena, making it imperative to evaluate wildland fire strategic goals and fuel treatment effectiveness at large spatial and temporal scales. Outside of simulation models, there is limited information on how stand-level fuel treatments collectively contribute to broader landscape-level fuel management goals. Our objective here is to present a framework designed to measure fuel treatment effectiveness from stands to landscapes to inform fuel treatment planning and improve ecological and social resilience to wildland fire.
Results
Our framework introduces the concept of a fuel management regime, an iterative and cumulative evaluation from the stand to the landscape of fire hazard, fuel treatments, and wildland fire behavior and effects. We argue that the successfulness of fuel treatments within this regime must be evaluated based on pre-treatment fire hazard and post-wildland fire fuel treatment outcomes over large spatial and temporal scales. Importantly, these outcomes can be evaluated from the stand level to across a landscape through time, based on preidentified management objectives that define condition-based criteria that account for social values and environmental and ecological indicators used to determine the effectiveness of fuel treatments within a fuel management regime.
Conclusions
Evaluating the cumulative ability of fuel treatments to change landscape patterns of fire behavior and effects is challenging. By quantifying fire hazard, followed by evaluating outcomes of wildfires on environmental and ecological indicators and social values, it becomes possible to assess how individual fuel treatments placed within the context of a fuel management regime are effective based on desired conditions that address management objectives. This conceptual framework offers a much-needed middle-ground planning, monitoring, and reporting approach between overly simplistic annual reporting summaries of the area treated, number of fires, and burned area and detailed fire simulation modeling outcomes by putting individual treatments and fires in the context of current and desired vegetative conditions and social values. Our fuel treatment effectiveness framework examines the state of fuels through the lens of fire hazard and connects fuels to subsequent fire behavior and effects over time and space. The framework provides a way to focus regional and national fuel management planning efforts toward creating fuel management regimes that increase social and ecological resilience from wildfire.
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry
Reference82 articles.
1. Agee, J.K., B. Bahro, M.A. Finney, P.N. Omi, D.B. Sapsis, C.N. Skinner, J.W. van Wagtendonk, and C.P. Weatherspoon. 2000. The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management 127: 55–66.
2. Agee, J.K., and C.N. Skinner. 2005. Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211: 83–96.
3. Ager, A.A., A.M.G. Barros, R. Houtman, R. Seli, and M.A. Day. 2020. Modelling the effect of accelerated forest management on long-term wildfire activity. Ecological Modelling 421: 108962. https://doi.org/10.1016/j.ecolmodel.2020.108962.
4. Ager, A.A., M.A. Day, P. Palaiologou, R.M. Houtman, C. Ringo, and C.R. Evers. 2019. Cross-boundary wildfire and community exposure: A framework and application in the western U.S. Gen. Tech. Rep. RMRS-GTR-392. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
5. Ager, A.A., M.A. Day, K.C. Short, and C.R. Evers. 2016. Assessing the impacts of federal forest planning on wildfire risk mitigation in the Pacific Northwest, USA. Landscape and Urban Planning 147: 1–17.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献