Towards using fluorescent nanodiamonds for studying cell migration

Author:

Reyes-San-Martin Claudia,Elías-Llumbet Arturo,Hamoh Thamir,Sharmin Rokshana,Zhang Yue,Hermann Angela,Woudstra Willem,Mzyk Aldona,Schirhagl Romana

Abstract

AbstractSince wound healing requires cells to repopulate a damaged area, cell migration is essential. In addition, migration plays a crucial role in cancer metastasis. Whether tumour cells can invade tissue and metastasize is a crucial factor determining their malignancy or in other words a hallmark of cancer (Lazebnik in Nat Rev Cancer 10: 232–233, 2010, https://doi.org/10.1038/nrc2827). Nanodiamonds potentially offer a powerful tool to investigate these migration processes. Due to their unprecedented photostability, they can function as long-term fluorescent labels. Besides, nanodiamonds are robust quantum sensors that can reveal, for instance, the temperature or the concentration of certain chemicals with nanoscale resolution. However, to utilise nanodiamonds to study cell migration, it is essential to understand if and how the presence of nanodiamonds influences cell migration. Here, we investigate this process for the first time. We found that nanodiamonds do not alter the speed at which HeLa cells populate a scratch at any tested concentrations. Furthermore, we tested cell attachment by quantifying focal adhesion points. Oxygen-terminated fluorescent nanodiamonds influence the cell spreading, the number of focal adhesions and the size of focal adhesion points. Interestingly, this is different for other types of nanodiamonds in the literature. For these particles, it has been described in the literature that they hinder cell migration. Our results support that fluorescent nanodiamonds do not influence cell migration strongly and thus can be used in labelling and sensing migrating cells. Graphical Abstract

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

CSC

European Commission

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3