Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20)

Author:

Chen Huei-Jen,Cheng Yi-An,Chen Yu-Tung,Li Chia-Ching,Huang Bo-Cheng,Hong Shih-Ting,Chen I.-Ju,Ho Kai-Wen,Chen Chiao-Yun,Chen Fang-Ming,Wang Jaw-Yuan,Roffler Steve R.,Cheng Tian-Lu,Wu Dung-Ho

Abstract

Abstract Background PEGylated nanoparticles (PEG-NPs) are not effective for hematologic malignancies as they lack the enhanced permeability and retention effect (EPR effect). Tumor-targeted PEG-NPs can systemically track lymphoma and actively internalize into cancer cells to enhance therapeutic efficacy. We generated an anti-PEG bispecific antibody (BsAb; mPEG × CD20) which was able to simultaneously bind to methoxy PEG on liposomes and CD20 to form multivalent αCD20-armed liposomes. This αCD20-armed liposome was able to crosslink CD20 on lymphoma cells to enhance cellular internalization and the anti-cancer efficacy of the liposomes to lymphoma. We generated mPEG × CD20 and used this bispecific antibody to modify PEGylated liposomal doxorubicin (PLD) through a one-step formulation. Results αCD20-armed PLD (αCD20/PLD) specifically targeted CD20+ Raji cells and enhanced PLD internalization 56-fold after 24 h. αCD20/PLD also increased cytotoxicity to Raji cells by 15.2-fold in comparison with PLD and control mPEG × DNS-modified PLD (αDNS/PLD). mPEG × CD20 significantly enhanced the tumor accumulation 2.8-fold in comparison with mPEG × DNS-conjugated PEGylated liposomal DiD in Raji tumors. Moreover, αCD20/PLD had significantly greater therapeutic efficacy as compared to αDNS/PLD (P < 0.0001) and PLD(P < 0.0001), and αCD20/PLD-treated mice had a 90% survival rate at 100-day post-treatment. Conclusions Modification of mPEG × CD20 can confer PLD with CD20 specificity to enhance the internalization and the anti-cancer efficacy of PEG-NPs. This therapeutic strategy can conveniently be used to modify various PEG-NPs with anti-PEG BsAb to overcome the lack of EPR effect of hematologic malignancies and improve therapeutic efficacy.

Funder

Ministry of Science and Technology, Taiwan

Kaohsiung Medical University Chung-Ho Memorial Hospital

Kaohsiung Medical University

Kaohsiung Medical University Research Center Grant

NTHU-KMU

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3