Inhibition of Enzyme and Bacteria Activities in Diabetic Ulcer-like Scenarios via WAAPV-Loaded Electrospun Fibers

Author:

Ribeiro Ana R. M.1,Miranda Catarina S.1,Silva Ana Francisca G.2ORCID,Mendes Filipa D. P.2,Silva Beatriz M.1,Oliveira Bruna A. S.1,Paiva Eduardo D.1,Gonçalves Sónia P.1ORCID,Pereira-Lima Sílvia M. M. A.2ORCID,Costa Susana P. G.2ORCID,Felgueiras Helena P.1ORCID

Affiliation:

1. Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal

2. Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

Abstract

In diabetic ulcers, an increased secretion of human neutrophil elastase (HNE) and bacterial infections play crucial roles in hindering healing. Considering that, the present study proposed the development of multi-action polycaprolactone (PCL)/polyethylene glycol (PEG) electrospun fibers incorporating elastase-targeting peptides, AAPV and WAAPV, via blending. Characterization confirmed WAAPV’s efficacy in regulating proteolytic enzymes by inhibiting HNE. The engineered fibers, particularly those containing PEG, exhibited optimal wettability but an accelerated degradation that was mitigated with the peptide’s inclusion, thus promoting a sustained peptide release over 24 h. Peptide loading was verified indirectly through thermal stability and hydration capacity studies (hydrophobic bonding between PCL and WAAPV and hydrophilic affinities between PCL/PEG and AAPV) and determined at ≈51.1 µg/cm2 and ≈46.0 µg/cm2 for AAPV and ≈48.5 µg/cm2 and ≈51.3 µg/cm2 for WAAPV, respectively, for PCL and PCL/PEG. Both AAPV and WAAPV effectively inhibited HNE, with PEG potentially enhancing this effect by interacting with the peptides and generating detectable peptide–PEG complexes (≈10% inhibition with PCL + peptide fibers after 6 h of incubation, and ≈20% with PCL/PEG + peptide fibers after 4 h incubation). Peptide-loaded fibers demonstrated antibacterial efficacy against Staphylococcus aureus (up to ≈78% inhibition) and Escherichia coli (up to ≈66% inhibition), with peak effectiveness observed after 4 and 2 h of incubation, respectively. This study provides initial insights into the WAAPV’s potential for inhibiting HNE and bacteria activities, showing promise for applications in diabetic ulcer management.

Funder

Centre for Textile Science and Technology

Centre of Chemistry

Portuguese Society of Diabetology under the 2023 Luis Marques SPD scholarships

FCT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3