Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer

Author:

Tan Tiantian,Feng Yuxin,Wang Weimin,Wang Rongrong,Yin Liyan,Zeng Yiying,Zeng Zhaowu,Xie Tian

Abstract

Abstract Background In the current treatment of non-small cell lung cancer (NSCLC), traditional chemotherapy causes high toxicity, so it is necessary to develop safe chemical drug delivery vehicles clinically. Chemotherapy monotherapy is prone to drug resistance. Chemotherapy combined with other therapies such as nucleic acid drugs is an effective way to avoid drug resistance and the toxicity of continuous chemotherapy. In this study, chemotherapy and siRNA therapy were combined to treat paclitaxel-resistant NSCLC in order to increase efficacy and reduce toxicity. This study aims to develop a cabazitaxel-loaded human serum albumin nanoparticles (CTX-HSA-NPs) to improve the toxicity of traditional CTX-Tween 80 and increase targeting, and to develop a TGFβ-1 siRNA lipid Nanoparticles (TGFβ-1 siRNA LNP) combined with chemotherapy in the treatment of paclitaxel-resistant NSCLC. Results This study prepared CTX-HSA-NPs and TGFβ-1 siRNA LNP had small particle size, high encapsulation efficiency (EE). CTX-HSA-NPs lyophilized powder has high stability after dissolved. The antitumor effect of CTX-HSA-NPs on paclitaxel-resistant NSCLC was higher than that of CTX-Tween, and the toxicity was 1.8 times lower than that of CTX-Tween. More importantly, the combined treatment of TGFβ-1 siRNA LNP and CTX-HSA-NPs could effectively improve the antitumor efficacy of paclitaxel-resistant NSCLC in vivo and in vitro. The results of tumor immunohistochemistry showed that TGFβ-1 siRNA LNP significantly inhibited the expression of TGFβ-1, and compared with other groups, the expression of P-gp after low-dose CTX-HSA-NPs treatment was lower, which did not cause obvious drug resistance. Conclusions The antitumor effect of CTX-HSA-NPs on paclitaxel-resistant NSCLC was higher than that of CTX-Tween, and the toxicity was lower than that of CTX-Tween. TGFβ-1 siRNA LNP can treat paclitaxel-resistant NSCLC by inhibiting the express of TGFβ-1 mRNA. The combined treatment of TGFβ-1 siRNA LNP and CTX-HSA-NPs could effectively improve the antitumor efficacy of paclitaxel-resistant NSCLC. A combination therapy of chemotherapy and nucleic acid drugs could be an effective approach for treating paclitaxel-resistant NSCLC.

Funder

Key Project of Zhejiang project Ministry of Science and Technology

Key Project of Hangzhou Ministry of Science and Technology

Program of Basic Public Welfare Research in Zhejiang Province of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3