The Efficacy and Safety of Polyethylene Glycol Cholesterol- and Tocopherol Polyethylene Glycol 1000 Succinate-Modified Transforming Growth Factor β1 Small Interfering RNA Lipid Nanoparticles in the Treatment of Paclitaxel-Resistant Non-Small-Cell Lung Cancer

Author:

Zeng Zhaowu1ORCID,Zeng Xianglong1,Li Xinyi1,Feng Yuxin1,Kan Yue1,Liu Xingyan2,Zeng Yiying1ORCID

Affiliation:

1. School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China

2. Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China

Abstract

The aim of this study was to explore the efficacy and safety of TGFβ1 siRNA lipid nanoparticles (LNPs) modified with different PEG derivatives (PEG5000 cholesterol, abbreviated as CE; tocopherol polyethylene glycol 1000 succinate, abbreviated as TPGS) in the treatment of paclitaxel-resistant non-small-cell lung cancer. Three kinds of TGFβ1 siRNA LNPs were prepared via microfluidics technology, using different PEG derivatives and dosages (CE1.5, CE2.5, TPGS2.5) as variables. Their particle size, zeta potential, contents, and encapsulation efficiencies were determined. The inhibition of TGFβ1 mRNA and protein expression and the effects of the three kinds of LNPs on the proliferation of paclitaxel-resistant non-small-cell lung cancer cells (A549/T cell) were characterized. The distributions of the three siRNA LNPs in nude mice bearing A549/T tumors, especially at the tumor site, were observed using in vivo mouse imaging technology, and their corresponding efficacies were evaluated. The average particle size of the three kinds of TGFβ1 siRNA LNPs was about 70–80 nm, and they were capable of charge flipping. All three siRNA LNPs could effectively inhibit the expression of TGFβ1 mRNA and protein in A549/T cells and inhibit the proliferation of A549/T cells in vitro. The results of in vivo mice imaging showed that the three kinds of siRNA LNPs, when labeled with cypate, retain strong fluorescence in the tumor at 24 h. The pharmacodynamic results, such as for relative tumor volumes and tumor inhibition rates, reveal that TGFβ1 siRNA LNPs modified with CE1.5, CE2.5, or TPGS2.5 can be used to effectively treat paclitaxel-resistant lung adenocarcinoma. The histopathological results showed that the three kinds of LNPs have a certain toxicity but are relatively safe compared to common forms of chemotherapy such as cabazitaxel. TGFβ1 siRNA LNPs modified with CE1.5, CE2.5, and TPGS2.5 can inhibit TGFβ1 mRNA and protein expression in A549/T cells in vitro and can accumulate and play a role in the tumor tissue of nude mice, features that can be exploited for treating paclitaxel-resistant lung adenocarcinoma.

Funder

Program of Basic Public Welfare Research in the Zhejiang Province of China

Key Project of the Zhejiang project Ministry of Science and Technology

Key Project of the Hangzhou Ministry of Science and Technology

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3