Author:
Zhou Qing,Zhang Li,Li Yujiao,Wang Jiao,He Xiaolu,Zhang Jieyu,Qiao Youbei,Wu Hong,Zhu Lin
Abstract
AbstractZinc oxide nanoparticles (ZnO NPs) have been known as a therapeutic agent and drug delivery system for treating various diseases, including infectious diseases and cancer. However, due to the low biocompatibility, short in vivo half-life, and potential toxicity, the previous studies on ZnO NPs were mainly focused on their in vitro applications. The effective and safe ZnO NP-based systems which can be used for in vivo drug delivery have been rarely reported. In this study, we developed a novel dual-responsive hybrid ZnO NP (ZnO/DPPG/PEG-pp-PE) consisting of the ZnO NPs, phospholipid (DPPG), and enzyme-sensitive amphiphilic polymer (PEG-pp-PE), which could respond to both tumoral matrix metalloproteinase 2 (MMP2) and intracellular acidic pH, for tumor-targeted drug delivery and multidrug resistant (MDR) cancer treatment. The dual-responsive ZnO/DPPG/PEG-pp-PE could easily load the model drug, doxorubicin (DOX), and showed excellent physicochemical properties, stability, and MMP2 and pH dual sensitivity. The ZnO/DPPG/PEG-pp-PE/DOX showed the MMP2-dependent cellular uptake, enhanced cell penetration, and improved anticancer activity in the MDR cancer cells and their spheroids. In the MDR tumor-bearing mice, the ZnO/DPPG/PEG-pp-PE/DOX improved the biocompatibility, tumor targetability, and anticancer activity of DOX and ZnO without significant toxicity compared to the free DOX, ZnO/DOX, and nonsensitive ZnO NPs. The data suggested that the dual-sensitive ZnO-based nanomedicine could be a promising delivery system for targeted drug delivery and therapy against the MDR cancer.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Innovation Capability Support Plan of Shaanxi Province
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献