Author:
Ma Yuxia,Liu Yi,Zhi Ying,Wang Haibin,Yang Mei,Niu Jieting,Zhao Li,Wang Pengsheng
Abstract
Abstract
Background
Immune checkpoint blockade (ICB)-based cancer immunotherapy presents promising efficacy in cancer treatment. However, only a small portion of patients show responsiveness to the treatment, which is partially caused by limited tumor infiltration of T cells. Chemokines CXCL9, CXCL10 and CXCL11 bind to their receptor CXCR3 to regulate T cell invasion.
Methods
We delivered plasmids encoding CXCL9, CXCL10 and CXCL11 to tumor cells and tumor tissues using nanoparticles and investigated their effect on T cell invasion and infiltration. In addition, we applied these nanoparticles together with anti-PD-1 antibody, which is known to activate T cells and restore immune function against tumor cells. The anti-tumor effects were evaluated.
Results
Delivering plasmids encoding CXCL9, CXCL10 and CXCL11 by nanoparticles resulted in expression of these chemokines in both LLC cells and tumors. Expressing CXCL9, CXCL10 and CXCL11 promoted the infiltration of T cells in vitro and in vivo, as well as decreased the tumor size. Nanoparticles together with anti-PD-1 displayed the best anti-tumor effects.
Conclusions
Delivery of CXCL9/10/11 plasmids by nanoparticles promoted T cell infiltration in tumors and synergizes with the activity of anti-PD1 antibody.
Funder
Cangzhou Science and Technology Research and Development Program
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献