Environmental drivers of autumn migration departure decisions in midcontinental mallards

Author:

Weller Florian G.ORCID,Beatty William S.,Webb Elisabeth B.,Kesler Dylan C.,Krementz David G.,Asante Kwasi,Naylor Luke W.

Abstract

Abstract Background The timing of autumn migration in ducks is influenced by a range of environmental conditions that may elicit individual experiences and responses from individual birds, yet most studies have investigated relationships at the population level. We used data from individual satellite-tracked mallards (Anas platyrhynchos) to model the timing and environmental drivers of autumn migration movements at a continental scale. Methods We combined two sets of location records (2004–2007 and 2010–2011) from satellite-tracked mallards during autumn migration in the Mississippi Flyway, and identified records that indicated the start of long-range (≥ 30 km) southward movements during the migration period. We modeled selection of departure date by individual mallards using a discrete choice model accounting for heterogeneity in individual preferences. We developed candidate models to predict the departure date, conditional on daily mean environmental covariates (i.e. temperature, snow and ice cover, wind conditions, precipitation, cloud cover, and pressure) at a 32 × 32 km resolution. We ranked model performance with the Bayesian Information Criterion. Results Departure was best predicted (60% accuracy) by a “winter conditions” model containing temperature, and depth and duration of snow cover. Models conditional on wind speed, precipitation, pressure variation, and cloud cover received lower support. Number of days of snow cover, recently experienced snow cover (snow days) and current snow cover had the strongest positive effect on departure likelihood, followed by number of experienced days of freezing temperature (frost days) and current low temperature. Distributions of dominant drivers and of correct vs incorrect prediction along the movement tracks indicate that these responses applied throughout the latitudinal range of migration. Among recorded departures, most were driven by snow days (65%) followed by current temperature (30%). Conclusions Our results indicate that among the tested environmental parameters, the dominant environmental driver of departure decision in autumn-migrating mallards was the onset of snow conditions, and secondarily the onset of temperatures close to, or below, the freezing point. Mallards are likely to relocate southwards quickly when faced with snowy conditions, and could use declining temperatures as a more graduated early cue for departure. Our findings provide further insights into the functional response of mallards to weather factors during the migration period that ultimately determine seasonal distributions.

Funder

Natural Resources Conservation Service

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3