Factors influencing autumn–winter movements of midcontinent Mallards and consequences for harvest and habitat management

Author:

Pearse Aaron T.1ORCID,Szymanski Michael L.2,Anchor Cynthia A.3,Anteau Michael J.1ORCID,Murano Rocco M.4,Brandt David A.1ORCID,Stafford Joshua D.5ORCID

Affiliation:

1. U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown North Dakota USA

2. North Dakota Game and Fish Department Bismarck North Dakota USA

3. Department of Natural Resources Management South Dakota State University Brookings South Dakota USA

4. South Dakota Game, Fish and Parks Brookings South Dakota USA

5. U.S. Geological Survey, South Dakota Cooperative Fish and Wildlife Research Unit Brookings South Dakota USA

Abstract

AbstractAnnual phenology and distributions of migratory wildlife have been noticeably influenced by climate change, leading to concerns about sustainable populations. Recent studies exploring conditions influencing autumn migration departure have provided conflicting insights regarding factors influencing the movements of Mallards (Anas platyrhynchos), a popular game species. We determined factors affecting timing and magnitude of long‐distance movements of 97 juvenile Mallards during autumn‐winter across the midcontinent of North America marked with implanted transmitters in North and South Dakota, 2018–2019. Factors influencing variation in movement timing, along with direction and magnitudes, depended on type of movement (i.e., regional [25–310 km], initial migration, or subsequent migration movements [>310 km]). Photoperiod influenced probability of initiating all movements, although the effect was most influential for regional movements. Minimum temperature most influenced initial migration events (probability of movement increased 29% for each 1°C decrease); favorable winds also increased likelihood of initial migration events. Probability of subsequent migration events increased 80% for each 1 cm increase in depth of snow. Subsequent migration movements also were 2.0 times more likely to occur on weekend days, indicating disturbance from humans may influence movements. Migration distances increased 166 km for each 1°C reduction in minimum temperature. We also observed markedly different autumn‐winter distributions of marked birds between years. Median locations during autumn‐winter 2018–2019 were ~250 km farther north and ~300 km farther west during mid‐December–January compared to the same time in 2019–2020. Concurrently, harvest rates for marked females and males were 10% and 26% during autumn‐winter 2018–2019 and 26% and 31% during autumn‐winter 2019–2020. Climate‐related changes may result in increasingly variable autumn‐winter distributions, with implications for wildlife recreationalists, conservation planners, and harvest managers.

Funder

Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada

South Dakota Game, Fish and Parks

South Dakota State University

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3