Rayleigh step-selection functions and connections to continuous-time mechanistic movement models

Author:

Eisaguirre Joseph M.,Williams Perry J.,Hooten Mevin B.

Abstract

Abstract Background The process known as ecological diffusion emerges from a first principles view of animal movement, but ecological diffusion and other partial differential equation models can be difficult to fit to data. Step-selection functions (SSFs), on the other hand, have emerged as powerful practical tools for ecologists studying the movement and habitat selection of animals. Methods SSFs typically involve comparing resources between a set of used and available points at each step in a sequence of observed positions. We use change of variables to show that ecological diffusion implies certain distributions for available steps that are more flexible than others commonly used. We then demonstrate advantages of these distributions with SSF models fit to data collected for a mountain lion in Colorado, USA. Results We show that connections between ecological diffusion and SSFs imply a Rayleigh step-length distribution and uniform turning angle distribution, which can accommodate data collected at irregular time intervals. The results of fitting an SSF model with these distributions compared to a set of commonly used distributions revealed how precision and inference can vary between the two approaches. Conclusions Our new continuous-time step-length distribution can be integrated into various forms of SSFs, making them applicable to data sets with irregular time intervals between successive animal locations.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3