Analysis of local habitat selection and large-scale attraction/avoidance based on animal tracking data: is there a single best method?

Author:

Mercker MoritzORCID,Schwemmer Philipp,Peschko Verena,Enners Leonie,Garthe Stefan

Abstract

Abstract Background New wildlife telemetry and tracking technologies have become available in the last decade, leading to a large increase in the volume and resolution of animal tracking data. These technical developments have been accompanied by various statistical tools aimed at analysing the data obtained by these methods. Methods We used simulated habitat and tracking data to compare some of the different statistical methods frequently used to infer local resource selection and large-scale attraction/avoidance from tracking data. Notably, we compared spatial logistic regression models (SLRMs), spatio-temporal point process models (ST-PPMs), step selection models (SSMs), and integrated step selection models (iSSMs) and their interplay with habitat and animal movement properties in terms of statistical hypothesis testing. Results We demonstrated that only iSSMs and ST-PPMs showed nominal type I error rates in all studied cases, whereas SSMs may slightly and SLRMs may frequently and strongly exceed these levels. iSSMs appeared to have on average a more robust and higher statistical power than ST-PPMs. Conclusions Based on our results, we recommend the use of iSSMs to infer habitat selection or large-scale attraction/avoidance from animal tracking data. Further advantages over other approaches include short computation times, predictive capacity, and the possibility of deriving mechanistic movement models.

Funder

Bundesministerium f?r Wirtschaft und Energie

Bundesministerium f?r Bildung und Forschung

Bundesamt f?r Naturschutz

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference74 articles.

1. Elith J, Leathwick JR. Species distribution models: Ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst. 2012; 40:677–97.

2. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed Effect Models and Extensions in Ecology with R. New York: Springer Science + Busines Media, LCC.; 2009.

3. Zuur AF. A Beginner’s Guide to Generalized Additive Models with R. Newburgh, UK: Highland Statistics Ltd.; 2012.

4. Korner-Nievergelt F, Roth T, von Felten S, Guelat J, Almasi B, Korner-Nievergelt P. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan. London: Elsevier; 2015.

5. Austin D, McMillan J, Bowen W. A three-stage algorithm for filtering erroneous argos satellite locations. Mar Mamm Sci. 2003; 19(2):371–83.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3