An integrative modelling framework for passive acoustic telemetry

Author:

Lavender Edward12ORCID,Biber Stanisław3ORCID,Illian Janine4,James Mark2ORCID,Wright Peter J.5ORCID,Thorburn James267ORCID,Smout Sophie12ORCID

Affiliation:

1. Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews UK

2. Scottish Oceans Institute University of St Andrews St Andrews UK

3. Department of Engineering Mathematics University of Bristol Bristol UK

4. School of Mathematics and Statistics University of Glasgow Glasgow UK

5. Marine Scotland Science Aberdeen UK

6. School of Applied Sciences Edinburgh Napier University Edinburgh UK

7. Centre for Conservation and Restoration Science Edinburgh Napier University Edinburgh UK

Abstract

Abstract Passive acoustic telemetry is widely used to study the movements of aquatic animals. However, a holistic, mechanistic modelling framework that permits the reconstruction of fine‐scale movements and emergent patterns of space use from detections at receivers remains lacking. Here, we introduce an integrative modelling framework that recapitulates the movement and detection processes that generate detections to reconstruct fine‐scale movements and patterns of space use. This framework is supported by a new family of algorithms designed for detection and depth observations and can be flexibly extended to incorporate other data types. Using simulation, we illustrate applications of our framework and evaluate algorithm utility and sensitivity in different settings. As a case study, we analyse movement data collected from the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. We show that our methods can be used to reconstruct fine‐scale movement paths, patterns of space use and support habitat preference analyses. For reconstructing patterns of space use, simulations show that the methods are consistently more instructive than the most widely used alternative approach (the mean‐position algorithm), particularly in clustered receiver arrays. For flapper skate, the reconstruction of movements reveals responses to disturbance, fine‐scale spatial partitioning and patterns of space use with significant implications for marine management. We conclude that this framework represents a widely applicable methodological advance with applications to studies of pelagic, demersal and benthic species across multiple spatiotemporal scales.

Funder

Marine Alliance for Science and Technology for Scotland

Scottish Funding Council

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3