Evaluating density-weighted connectivity of black bears (Ursus americanus) in Glacier National Park with spatial capture–recapture models

Author:

Carroll Sarah L.ORCID,Schmidt Greta M.ORCID,Waller John S.,Graves Tabitha A.ORCID

Abstract

Abstract Background Improved understanding of wildlife population connectivity among protected area networks can support effective planning for the persistence of wildlife populations in the face of land use and climate change. Common approaches to estimating connectivity often rely on small samples of individuals without considering the spatial structure of populations, leading to limited understanding of how individual movement links to demography and population connectivity. Recently developed spatial capture-recapture (SCR) models provide a framework to formally connect inference about individual movement, connectivity, and population density, but few studies have applied this approach to empirical data to support connectivity planning. Methods We used mark-recapture data collected from 924 genetic detections of 598 American black bears (Ursus americanus) in 2004 with SCR ecological distance models to simultaneously estimate density, landscape resistance to movement, and population connectivity in Glacier National Park northwest Montana, USA. We estimated density and movement parameters separately for males and females and used model estimates to calculate predicted density-weighted connectivity surfaces. Results Model results indicated that landscape structure influences black bear density and space use in Glacier. The mean density estimate was 16.08 bears/100 km2 (95% CI 12.52–20.6) for females and 9.27 bears/100 km2 (95% CI 7.70–11.14) for males. Density increased with forest cover for both sexes. For male black bears, density decreased at higher grizzly bear (Ursus arctos) densities. Drainages, valley bottoms, and riparian vegetation decreased estimates of landscape resistance to movement for male and female bears. For males, forest cover also decreased estimated resistance to movement, but a transportation corridor bisecting the study area strongly increased resistance to movement presenting a barrier to connectivity. Conclusions Density-weighed connectivity surfaces highlighted areas important for population connectivity that were distinct from areas with high potential connectivity. For black bears in Glacier and surrounding landscapes, consideration of both vegetation and valley topography could inform the placement of underpasses along the transportation corridor in areas characterized by both high population density and potential connectivity. Our study demonstrates that the SCR ecological distance model can provide biologically realistic, spatially explicit predictions to support movement connectivity planning across large landscapes.

Funder

National Science Foundation, United States

U.S. Geological Survey

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3