Transporter-dependent uptake and metabolism of myocardial interstitial serotonin in the rat heart

Author:

Sonobe TakashiORCID,Akiyama Tsuyoshi,Pearson James T.

Abstract

AbstractTo investigate the roles of the serotonin (5-HT) transporter (SERT) and plasma membrane monoamine transporter (PMAT) in 5-HT uptake and its metabolism in the heart, we monitored myocardial interstitial levels of 5-HT and 5-HIAA, a metabolite of 5-HT by monoamine oxidase (MAO), in anesthetized rats using a microdialysis technique. Fluoxetine (SERT inhibitor), decynium-22 (PMAT inhibitor), or their mixture was locally administered by reverse-microdialysis for 60 min. Subsequently, pargyline (MAO inhibitor) was co-administered. Fluoxetine rapidly increased dialysate 5-HT concentration, while decynium-22 gradually increased it. The mixture induced a larger increase in dialysate 5-HT concentration compared to fluoxetine or decynium-22 alone. Fluoxetine increased dialysate 5-HIAA concentration, and this increase was abolished by pargyline. Decynium-22 and the mixture did not change dialysate 5-HIAA concentration, which were not affected by pargyline. Both SERT and PMAT regulate myocardial interstitial 5-HT levels by its uptake; however, 5-HT uptake via PMAT leads to 5-HT metabolism by MAO.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3