Affiliation:
1. Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
2. Institute for Hematopathology, Hamburg, Germany
3. Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Abstract
Using transgenic (TG) mice that overexpress the human serotonin (5-HT)4a receptor specifically in cardiomyocytes, we wanted to know whether 5-HT can be formed and degraded in the mammalian heart and whether this can likewise lead to inotropic and chronotropic effects in this TG model. We noted that the 5-HT precursor 5-hydroxy-tryptophan (5-HTP) can exert inotropic and chronotropic effects in cardiac preparations from TG mice but not from wild-type (WT) mice; similar results were found in human atrial preparations as well as in intact TG animals using echocardiography. Moreover, by immunohistochemistry we could detect 5-HT metabolizing enzymes and 5-HT transporters in mouse hearts as well as in human atria. Hence, in the presence of an inhibitor of aromatic l-amino acid decarboxylase, the positive inotropic effects of 5-HTP were absent in TG and isolated human atrial preparations, and, moreover, inhibitors of enzymes involved in 5-HT degradation enhanced the efficacy of 5-HT in TG atria. A releaser of neurotransmitters increased inotropy in the isolated TG atrium, and this effect could be blocked by a 5-HT4a receptor antagonist. Fluoxetine, an inhibitor of 5-HT uptake, elevated the potency of 5-HT to increase contractility in the TG atrium. In addition, inhibitors of organic cation and monoamine transporters apparently reduced the positive inotropic potency of 5-HT in the TG atrium. Hence, we tentatively conclude that a local production and degradation of 5-HT in the mammalian heart and more specifically in mammalian myocytes probably occurs. Conceivably, this formation of 5-HT and possibly impaired degradation may be clinically relevant in cases of unexplained tachycardia and other arrhythmias. NEW & NOTEWORTHY The present work suggests that inotropically active serotonin (5-HT) can be formed in the mouse and human heart and probably by cardiomyocytes themselves. Moreover, active degradation of 5-HT seems to occur in the mammalian heart. These findings may again increase the interest of researchers for cardiac effects of 5-HT.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献