Brain activity during dual-task standing in older adults

Author:

Kahya Melike,Gouskova Natalia A.,Lo On-Yee,Zhou Junhong,Cappon Davide,Finnerty Emma,Pascual-Leone Alvaro,Lipsitz Lewis A.,Hausdorff Jeffrey M.,Manor Brad

Abstract

Abstract Background In older adults, the extent to which performing a cognitive task when standing diminishes postural control is predictive of future falls and cognitive decline. The neurophysiology of such “dual-tasking” and its effect on postural control (i.e., dual-task cost) in older adults are poorly understood. The purpose of this study was to use electroencephalography (EEG) to examine the effects of dual-tasking when standing on brain activity in older adults. We hypothesized that compared to single-task “quiet” standing, dual-task standing would decrease alpha power, which has been linked to decreased motor inhibition, as well as increase the ratio of theta to beta power, which has been linked to increased attentional control. Methods Thirty older adults without overt disease completed four separate visits. Postural sway together with EEG (32-channels) were recorded during trials of standing with and without a concurrent verbalized serial subtraction dual-task. Postural control was measured by average sway area, velocity, and path length. EEG metrics included absolute alpha-, theta-, and beta-band powers as well as theta/beta power ratio, within six demarcated regions-of-interest: the left and right anterior, central, and posterior regions of the brain. Results Most EEG metrics demonstrated moderate-to-high between-day test–retest reliability (intra-class correlation coefficients > 0.70). Compared with quiet standing, dual-tasking decreased alpha-band power particularly in the central regions bilaterally (p = 0.002) and increased theta/beta power ratio in the anterior regions bilaterally (p < 0.001). A greater increase in theta/beta ratio from quiet standing to dual-tasking in numerous demarcated brain regions correlated with greater dual-task cost (i.e., absolute increase, indicative of worse performance) to postural sway metrics (r = 0.45–0.56, p < 0.01). Lastly, participants who exhibited greater alpha power during dual-tasking in the anterior-right (r = 0.52, p < 0.01) and central-right (r = 0.48, p < 0.01) regions had greater postural sway velocity during dual-tasking. Conclusion In healthy older adults, alpha power and theta/beta power ratio change with dual-task standing. The change in theta/beta power ratio in particular may be related to the ability to regulate standing postural control when simultaneously performing unrelated, attention-demanding cognitive tasks. Modulation of brain oscillatory activity might therefore be a novel target to minimize dual-task cost in older adults.

Funder

National Institute on Aging

Family of Beth and Richard Marcus Research Fund

National Institutes of Health

Neuroelectrics Corp.

U.S.-Israel Binational Science Foundation

Boston Claude D. Pepper Older Americans Independence Center

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3