The Effect of Sensory Reweighting on Postural Control and Cortical Activity in Parkinson’s Disease

Author:

Sadeghi MaryamORCID,Bristow Thomas,Fakorede Sodiq,Liao Ke,Palmer Jacqueline A.ORCID,Lyons Kelly E.,Pahwa Rajesh,Huang Chun-Kai,Akinwuntan Abiodun,Devos HannesORCID

Abstract

AbstractAimsBalance requires the cortical control of visual, somatosensory, and vestibular inputs. The aim of this cross-sectional study was to compare the contributions of each of these systems on postural control and cortical activity using a sensory reweighting approach between participants with Parkinson’s disease (PD) and controls.MethodsTen participants with PD (age: 72 ± 9; 3 women; Hoehn & Yahr: 2 [1.5 – 2.50]) and 11 controls (age: 70 ± 3; 4 women) completed a sensory organization test in virtual reality (VR-SOT) while cortical activity was being recorded using electroencephalography (EEG). Conditions 1 to 3 were completed on a stable platform; conditions 4 to 6 on a foam. Conditions 1 and 4 were done with eyes open; conditions 2 and 5 in a darkened VR environment; and conditions 3 and 6 in a moving VR environment. Linear mixed models were used to evaluate changes in center of pressure (COP) displacement and EEG alpha and theta/beta ratio power between the two groups across the postural control conditions. Condition 1 was used as reference in all analyses.ResultsParticipants with PD showed greater COP displacement than controls in the anteroposterior (AP) direction when relying on vestibular input (condition 5; p<0.0001). The mediolateral (ML) COP sway was greater in PD than in controls when relying on the somatosensory (condition 2; p = 0.03), visual (condition 4; p = 0.002), and vestibular (condition 5; p < 0.0001) systems. Participants with PD exhibited greater alpha power compared to controls when relying on visual input (condition 2; p = 0.003) and greater theta/beta ratio power when relying on somatosensory input (condition 4; p = 0.001).ConclusionsPD affects reweighting of postural control, exemplified by greater COP displacement and increased cortical activity. Further research is needed to establish the temporal dynamics between cortical activity and COP displacement.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3