Abstract
Abstract
Background
Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors.
Methods
We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2–4 weeks after stroke onset and 14 matched healthy controls. Participants had real dual-tDCS (with an ipsilesional [right for controls] M1 anode and a contralesional M1 [left for controls] cathode; 2 mA for 20mins) and sham dual-tDCS on separate days, with concurrent paretic [left for controls] hand exercise. Using transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), we recorded motor evoked potentials (MEPs), the ipsilateral silent period (iSP), short-interval intracortical inhibition, and finger movement-related cortical oscillations before and immediately after tDCS.
Results
Stroke survivors had decreased excitability in ipsilesional M1 with a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline compared with controls, as quantified by decreased MEPs and increased iSP duration. Dual-tDCS led to increased MEPs and decreased iSP duration in ipsilesional M1. The magnitude of the tDCS-induced MEP increase in stroke survivors was predicted by baseline contralesional-to-ipsilesional transcallosal inhibition (iSP) ratio. Baseline post-movement synchronization in α-band activity in ipsilesional M1 was decreased after stroke compared with controls, and its tDCS-induced increase correlated with upper limb score in stroke survivors. No significant adverse effects were observed during or after dual-tDCS.
Conclusions
Task-concurrent dual-tDCS in subacute stroke can safely and effectively modulate bilateral M1 excitability and inter-hemispheric imbalance and also movement-related α-activity.
Funder
Ministry of Science and Technology, Taiwan
Taipei Veterans General Hospital
National Yang-Ming University
Wellcome Trust
Royal Society
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference68 articles.
1. Kubis N. Non-invasive brain stimulation to enhance post-stroke recovery. Front Neural Circuits. 2016;10:56.
2. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.
3. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.
4. Takeuchi N, Izumi S. Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. Stroke Res Treat. 2012;2012:584727.
5. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献