Abstract
Abstract
Background
For people with lower-limb amputations, wearing a prosthetic limb helps restore their motor abilities for daily activities. However, the prosthesis's potential benefits are hindered by limited somatosensory feedback from the affected limb and its prosthesis. Previous studies have examined various sensory substitution systems to alleviate this problem; the prominent approach is to convert foot–ground interaction to tactile stimulations. However, positive outcomes for improving their postural stability are still rare. We hypothesized that the sensory substiution system based on surrogated tactile stimulus is capable of improving the standing stability among people with lower-limb amputations.
Methods
We designed a wearable device consisting of four pressure sensors and two vibrators and tested it among people with unilateral transtibial amputations (n = 7) and non-disabled participants (n = 8). The real-time measurements of foot pressure were fused into a single representation of foot–ground interaction force, which was encoded by varying vibration intensity of the two vibrators attached to the participants’ forearm. The vibration intensity followed a logarithmic function of the force representation, in keeping with principles of tactile psychophysics. The participants were tested with a classical postural stability task in which visual disturbances perturbed their quiet standing.
Results
With a brief familiarization of the system, the participants exhibited better postural stability against visual disturbances when switching on sensory substitution than without. The body sway was substantially reduced, as shown in head movements and excursions of the center of pressure. The improvement was present for both groups of participants and was particularly pronounced in more challenging conditions with larger visual disturbances.
Conclusions
Substituting otherwise missing foot pressure feedback with vibrotactile signals can improve postural stability for people with lower-limb amputations. The design of the mapping between the foot–ground interaction force and the tactile signals is essential for the user to utilize the surrogated tactile signals for postural control, especially for situations that their postural control is challenged.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference62 articles.
1. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3(11):1212–7.
2. Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P. Active lower limb prosthetics: a systematic review of design issues and solutions. Biomed Eng Online. 2016;15(3):5–19.
3. Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans Rob. 2009;25(1):51–66.
4. Hitt J, Sugar T, Holgate M, Bellman R, Hollander K. Robotic transtibial prosthesis with biomechanical energy regeneration. Industrial Robot. 2009;36(5):441–7.
5. Lawson BE, Mitchell J, Truex D, Shultz A, Ledoux E, Goldfarb M. A robotic leg prosthesis: design, control, and implementation. IEEE Robot Autom Mag. 2014;21(4):70–81.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献