Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches

Author:

Thakkar Hiren Kumar,Liao Wan-wenORCID,Wu Ching-yiORCID,Hsieh Yu-WeiORCID,Lee Tsong-Hai

Abstract

Abstract Background Accurate prediction of motor recovery after stroke is critical for treatment decisions and planning. Machine learning has been proposed to be a promising technique for outcome prediction because of its high accuracy and ability to process large volumes of data. It has been used to predict acute stroke recovery; however, whether machine learning would be effective for predicting rehabilitation outcomes in chronic stroke patients for common contemporary task-oriented interventions remains largely unexplored. This study aimed to determine the accuracy and performance of machine learning to predict clinically significant motor function improvements after contemporary task-oriented intervention in chronic stroke patients and identify important predictors for building machine learning prediction models. Methods This study was a secondary analysis of data using two common machine learning approaches, which were the k-nearest neighbor (KNN) and artificial neural network (ANN). Chronic stroke patients (N = 239) that received 30 h of task-oriented training including the constraint-induced movement therapy, bilateral arm training, robot-assisted therapy and mirror therapy were included. The Fugl-Meyer assessment scale (FMA) was the main outcome. Potential predictors include age, gender, side of lesion, time since stroke, baseline functional status, motor function and quality of life. We divided the data set into a training set and a test set and used the cross-validation procedure to construct machine learning models based on the training set. After the models were built, we used the test data set to evaluate the accuracy and prediction performance of the models. Results Three important predictors were identified, which were time since stroke, baseline functional independence measure (FIM) and baseline FMA scores. Models for predicting motor function improvements were accurate. The prediction accuracy of the KNN model was 85.42% and area under the receiver operating characteristic curve (AUC-ROC) was 0.89. The prediction accuracy of the ANN model was 81.25% and the AUC-ROC was 0.77. Conclusions Incorporating machine learning into clinical outcome prediction using three key predictors including time since stroke, baseline functional and motor ability may help clinicians/therapists to identify patients that are most likely to benefit from contemporary task-oriented interventions. The KNN and ANN models may be potentially useful for predicting clinically significant motor recovery in chronic stroke.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3