Machine learning in predicting outcomes for stroke patients following rehabilitation treatment: A systematic review

Author:

Zu Wanting,Huang Xuemiao,Xu Tianxin,Du Lin,Wang Yiming,Wang LishengORCID,Nie Wenbo

Abstract

Objective This review aimed to summarize the use of machine learning for predicting the potential benefits of stroke rehabilitation treatments, to evaluate the risk of bias of predictive models, and to provide recommendations for future models. Materials and methods This systematic review was conducted in accordance with the PRISMA statement and the CHARMS checklist. The PubMed, Embase, Cochrane Library, Scopus, and CNKI databases were searched up to April 08, 2023. The PROBAST tool was used to assess the risk of bias of the included models. Results Ten studies within 32 models met our inclusion criteria. The optimal AUC value of the included models ranged from 0.63 to 0.91, and the optimal R2 value ranged from 0.64 to 0.91. All of the included models were rated as having a high or unclear risk of bias, and most of them were downgraded due to inappropriate data sources or analysis processes. Discussion and conclusion There remains much room for improvement in future modeling studies, such as high-quality data sources and model analysis. Reliable predictive models should be developed to improve the efficacy of rehabilitation treatment by clinicians.

Funder

the Higher Education Research Project of Jilin Province

Program of Science and Technology Development Plan of Jilin Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Rehabilitation Outcomes with DynTherapy: An AI-Driven Personalized Approach;2024 15th International Conference on Information and Communication Systems (ICICS);2024-08-13

2. Predictive modeling of stroke occurrence using Python for improved risk assessment;Journal of Process Management and New Technologies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3