Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals

Author:

Gantenbein Jessica,Ahmadizadeh Chakaveh,Heeb Oliver,Lambercy Olivier,Menon Carlo

Abstract

Abstract Background Assistive robotic hand orthoses can support people with sensorimotor hand impairment in many activities of daily living and therefore help to regain independence. However, in order for the users to fully benefit from the functionalities of such devices, a safe and reliable way to detect their movement intention for device control is crucial. Gesture recognition based on force myography measuring volumetric changes in the muscles during contraction has been previously shown to be a viable and easy to implement strategy to control hand prostheses. Whether this approach could be efficiently applied to intuitively control an assistive robotic hand orthosis remains to be investigated. Methods In this work, we assessed the feasibility of using force myography measured from the forearm to control a robotic hand orthosis worn on the hand ipsilateral to the measurement site. In ten neurologically-intact participants wearing a robotic hand orthosis, we collected data for four gestures trained in nine arm configurations, i.e., seven static positions and two dynamic movements, corresponding to typical activities of daily living conditions. In an offline analysis, we determined classification accuracies for two binary classifiers (one for opening and one for closing) and further assessed the impact of individual training arm configurations on the overall performance. Results We achieved an overall classification accuracy of 92.9% (averaged over two binary classifiers, individual accuracies 95.5% and 90.3%, respectively) but found a large variation in performance between participants, ranging from 75.4 up to 100%. Averaged inference times per sample were measured below 0.15 ms. Further, we found that the number of training arm configurations could be reduced from nine to six without notably decreasing classification performance. Conclusion The results of this work support the general feasibility of using force myography as an intuitive intention detection strategy for a robotic hand orthosis. Further, the findings also generated valuable insights into challenges and potential ways to overcome them in view of applying such technologies for assisting people with sensorimotor hand impairment during activities of daily living.

Funder

National Centre of Competence in Research Robotics

National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3