Classification and prediction of Mycobacterium Avium subsp. Paratuberculosis (MAP) shedding severity in cattle based on young stock heifer faecal microbiota composition using random forest algorithms

Author:

Umanets Alexander,Dinkla Annemieke,Vastenhouw Stephanie,Ravesloot Lars,Koets Ad P.

Abstract

Abstract Background Bovine paratuberculosis is a devastating infectious disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). The development of the paratuberculosis in cattle can take up to a few years and vastly differs between individuals in severity of the clinical symptoms and shedding of the pathogen. Timely identification of high shedding animals is essential for paratuberculosis control and minimization of economic losses. Widely used methods for detection and quantification of MAP, such as culturing and PCR based techniques rely on direct presence of the pathogen in a sample and have little to no predictive value concerning the disease development. In the current study, we investigated the possibility of predicting MAP shedding severity in cattle based on the faecal microbiota composition. Twenty calves were experimentally infected with MAP and faecal samples were collected biweekly up to four years of age. All collected samples were subjected to culturing on selective media to obtain data about shedding severity. Faecal microbiota was profiled in a subset of samples (n = 264). Using faecal microbiota composition and shedding intensity data a random forest classifier was built for prediction of the shedding status of the individual animals. Results The results indicate that machine learning approaches applied to microbial composition can be used to classify cows into groups by severity of MAP shedding. The classification accuracy correlates with the age of the animals and use of samples from older individuals resulted in a higher classification precision. The classification model based on samples from the first 12 months of life showed an AUC between 0.78 and 0.79 (95% CI), while the model based on samples from animals older than 24 months showed an AUC between 0.91 and 0.92 (95% CI). Prediction for samples from animals between 12 and 24 month of age showed intermediate accuracy [AUC between 0.86 and 0.87 (95% CI)]. In addition, the results indicate that a limited number of microbial taxa were important for classification and could be considered as biomarkers. Conclusions The study provides evidence for the link between microbiota composition and severity of MAP infection and shedding, as well as lays ground for the development of predictive diagnostic tools based on the faecal microbiota composition.

Funder

ministerie van landbouw, natuur en voedselkwaliteit

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3