Influences of claywater and greenwater on the skin microbiome of cultured larval sablefish (Anoplopoma fimbria)

Author:

Dodd Emily T.,Pierce Melissa L.ORCID,Lee Jonathan S. F.,Poretsky Rachel S.

Abstract

Abstract Background The skin microbiome of marine fish is thought to come from bacteria in the surrounding water during the larval stages, although it is not clear how different water conditions affect the microbial communities in the water and, in turn, the composition and development of the larval skin microbiome. In aquaculture, water conditions are especially important; claywater and greenwater are often used in larval rearing tanks to increase water turbidity. Here, we explored the effects of these water additives on microbial communities in rearing water and on the skin of first-feeding sablefish larvae using 16S rRNA gene sequencing. We evaluated three treatments: greenwater, claywater, and greenwater with a switch to claywater after 1 week. Results We observed additive-specific effects on rearing water microbial communities that coincided with the addition of larvae and rotifer feed to the tanks, such as an increase in Vibrionaceae in greenwater tanks. Additionally, microbial communities from experimental tank water, especially those in claywater, began to resemble larval skin microbiomes by the end of the experiment. The differential effects of the additives on larval sablefish skin microbiomes were largest during the first week, post-first feed. Bacteria associated with greenwater, including Vibrionaceae and Pseudoalteromonas spp., were found on larval skin a week after the switch to claywater. In addition to additive-specific effects, larval skin microbiomes also retained bacterial families likely acquired from their hatchery silos. Conclusions Our results suggest that larval sablefish skin microbiomes are most sensitive to the surrounding seawater up to 1 week following the yolk-sac stage and that claywater substituted for greenwater after 1 week post-first feed does not significantly impact skin-associated microbial communities. However, the larval skin microbiome changes over time under all experimental conditions. Furthermore, our findings suggest a potential two-way interaction between microbial communities on the host and the surrounding environment. To our knowledge, this is one of the few studies to suggest that fish might influence the microbial community of the seawater.

Funder

National Marine Fisheries Service, National Oceanic and Atmospheric Administration

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3