Surface electroencephalography (EEG) during the acute phase of stroke to assist with diagnosis and prediction of prognosis: a scoping review

Author:

Sutcliffe Lou,Lumley Hannah,Shaw Lisa,Francis Richard,Price Christopher I.

Abstract

Abstract Background Stroke is a common medical emergency responsible for significant mortality and disability. Early identification improves outcomes by promoting access to time-critical treatments such as thrombectomy for large vessel occlusion (LVO), whilst accurate prognosis could inform many acute management decisions. Surface electroencephalography (EEG) shows promise for stroke identification and outcome prediction, but evaluations have varied in technology, setting, population and purpose. This scoping review aimed to summarise published literature addressing the following questions: 1. Can EEG during acute clinical assessment identify: a) Stroke versus non-stroke mimic conditions. b) Ischaemic versus haemorrhagic stroke. c) Ischaemic stroke due to LVO. 2. Can these states be identified if EEG is applied < 6 h since onset. 3. Does EEG during acute assessment predict clinical recovery following confirmed stroke. Methods We performed a systematic search of five bibliographic databases ending 19/10/2020. Two reviewers assessed eligibility of articles describing diagnostic and/or prognostic EEG application < 72 h since suspected or confirmed stroke. Results From 5892 abstracts, 210 full text articles were screened and 39 retained. Studies were small and heterogeneous. Amongst 21 reports of diagnostic data, consistent associations were reported between stroke, greater delta power, reduced alpha/beta power, corresponding ratios and greater brain asymmetry. When reported, the area under the curve (AUC) was at least good (0.81–1.00). Only one study combined clinical and EEG data (AUC 0.88). There was little data found describing whether EEG could identify ischaemic versus haemorrhagic stroke. Radiological changes suggestive of LVO were also associated with increased slow and decreased fast waves. The only study with angiographic proof of LVO reported AUC 0.86 for detection < 24 h since onset. Amongst 26 reports of prognostic data, increased slow and reduced fast wave EEG changes were associated with future dependency, neurological impairment, mortality and poor cognition, but there was little evidence that EEG enhanced outcome prediction relative to clinical and/or radiological variables. Only one study focussed solely on patients < 6 h since onset for predicting neurological prognosis post-thrombolysis, with more favourable outcomes associated with greater hemispheric symmetry and a greater ratio of fast to slow waves. Conclusions Although studies report important associations with EEG biomarkers, further technological development and adequately powered real-world studies are required before recommendations can be made regarding application during acute stroke assessment.

Publisher

Springer Science and Business Media LLC

Subject

Emergency Medicine

Reference68 articles.

1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–54.

2. National Audit Office. Reducing brain damage: faster access to better stroke care. Health and Social Care. London 2005. https://www.nao.org.uk/report/department-of-health-reducing-brain-damage-faster-access-to-better-stroke-care/

3. Clinical Effectiveness and Evaluation Unit Royal College of Physicians. The Sentinel Stroke National Audit Programme (SSNAP). 2020. https://www.rcplondon.ac.uk/projects/ssnap-clinical-audit.

4. McClelland G, Rodgers H, Flynn D, Price CI. The frequency, characteristics and aetiology of stroke mimic presentations: a narrative review. Eur J Emerg Med. 2019;26(1):2–8.

5. Turc G, Maier B, Naggara O, Seners P, Isabel C, Tisserand M, et al. Clinical Scales Do Not Reliably Identify Acute Ischemic Stroke Patients With Large-Artery Occlusion. Stroke. 2016;47(6):1466–72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3