Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring

Author:

Liu Yunyun,Chen Shengzhu,Pang Dejian,Zhou Jiayi,Xu Xiuting,Yang Si,Huang Zhaofeng,Yu BolanORCID

Abstract

Abstract Background Although paternal exposure to cigarette smoke may contribute to obesity and metabolic syndrome in offspring, the underlying mechanisms remain uncertain. Methods In the present study, we analyzed the sperm DNA-methylation profiles in tobacco-smoking normozoospermic (SN) men, non-tobacco-smoking normozoospermic (N) men, and non-smoking oligoasthenozoospermic (OA) men. Using a mouse model, we also analyzed global methylation and differentially methylated regions (DMRs) of the DLK1 gene in paternal spermatozoa and the livers of progeny. In addition, we quantified DLK1 expression, executed an intra-peritoneal glucose tolerance test (IPGTT), measured serum metabolites, and analyzed liver lipid accumulation in the F1 offspring. Results Global sperm DNA-methylation levels were significantly elevated (p  < 0.05) in the SN group, and the methylation patterns were different among N, SN, and OA groups. Importantly, the methylation level of the DLK1 locus (cg11193865) was significantly elevated in the SN group compared to both N and OA groups (p  < 0.001). In the mouse model, the group exposed to cigarette smoke extract (CSE) exhibited a significantly higher global methylation DNA level in spermatozoa (p  < 0.001) and on the DMR sites of Dlk1 in 10-week-old male offspring (p  < 0.05), with a significant increase in Dlk1 expression in their livers (p  < 0.001). In addition, IPGTT and LDL levels were significantly altered (p  < 0.001), with elevated liver fat accumulation (p  < 0.05) in F1 offspring. Conclusion Paternal exposure to cigarette smoke led to increased global methylation of sperm DNA and alterations to the DMR of the DLK1 gene in the F1 generation, which may be inherited parentally and may perturb long-term metabolic function.

Funder

guangdong science and technology department

guangzhou science, technology and innovation commission

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3