Effects of the COVID-19 pandemic on public bus occupancy and real-world tailpipe emissions of gaseous pollutants per passenger kilometer traveled

Author:

Dhital Narayan Babu,Wang Lin-Chi,Yang Hsi-HsienORCID,Lee Che-Hsuan,Shih Wei-Hung,Wu Cheng-Shiu

Abstract

AbstractPublic buses typically have less emission per passenger kilometer traveled (PKT) than private cars and motorcycles, and the emission benefit of public buses increases with ridership. However, the drop in public bus usage during the novel coronavirus (COVID-19) pandemic could lead to an increase in air pollutant emissions per PKT, making the emission benefits of public buses questionable. This study investigated the effects of the COVID-19 pandemic on public bus occupancy rates in Taichung City, Taiwan, and also compared real-world emissions per PKT of carbon monoxide (CO), total hydrocarbons (THC), nitric oxide (NO), and carbon dioxide (CO2) of a public bus before and during the pandemic. Mean bus occupancy rates were 11–25% on different bus routes before the pandemic, indicating that only a fourth or less of the bus passenger capacity was utilized. During the pandemic, mean bus occupancy rates dropped to 4–15%. Moreover, the public bus was less polluting based on CO and THC emissions than the car and motorcycle, even at the low passenger occupancy rates observed during the pandemic. However, NO and CO2 emissions per PKT of the bus were remarkably higher during the pandemic than those of the car and motorcycle. Furthermore, we estimated the break-even passenger occupancy rate for buses as 15%, which was the minimum threshold occupancy rate below which the buses would be more polluting than cars and motorcycles in terms of CO, THC, and CO2 emissions per PKT. Our findings will help transport management authorities and policymakers to optimize bus route designs and frequencies and implement anti-pandemic measures to maximize the environmental benefits of the public bus transit systems.

Funder

Taichung City Environmental Protection Bureau, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3