Recycling of aluminum dross for producing calcinated alumina by microwave plasma

Author:

Lin Wen-Chang,Tsai Cheng-Hsien,Zhang Da-Nian,Syu Sheng-Syong,Kuo Yi-MingORCID

Abstract

AbstractDue to the excellent engineering property, aluminum has become an important material for processing industries. As the demand of aluminum increased, a large amount of waste aluminum dross has been generated during the aluminum smelting process. The aluminum dross contained aluminum nitride and would cause odor while being disposed in landfill, making the aluminum dross disposal a tough issue. Therefore, the aluminum dross was mostly stored in the original plants. The objective of this study is to develop an economically-feasible and environmentally-friendly technology to recover aluminum dross.In this study, the original aluminum dross was collected from the secondary smelting aluminum dross factories with 33.6% Al. The aluminum dross was dissolved with 3 M NaOH at 50 °C for 60 min to form NaAl(OH)4 solution. The NaAl(OH)4 was then transformed to aluminum hydroxide by adding H2SO4. Then, the aluminum hydroxide was filtered, washed, and dried. The thermogravimetric analysis and X-ray powder diffraction analysis result show that the main crystal phase of aluminum hydroxide (intermediate product) is boehmite. The aluminum hydroxide powder was calcined at 700 °C for 5 min by an atmospheric-pressure microwave plasma to produce Al2O3. The result show that this process can reduce environmental pollution and recycle aluminum as recoverable form.

Funder

Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3