Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD)

Author:

Jiang Qiao1,Lee Bin1

Affiliation:

1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Secondary aluminum dross is a solid waste generated after removing aluminum from industrial aluminum slag (primary aluminum dross), which is included in the European Hazardous Waste List because of harmful substances such as aluminum nitride. More and more SAD is being directly disposed of in landfills, which will not only harm the ecological environment and human health, but also cause resources. Under the background of green and low-carbon circular economy, nitrogen removal and resource recycling of SAD are very important environmental pollution, resource and the economic benefits of the aluminum industry. In this study, a new method was introduced to explore the interaction between various factors in the denitrification process by using the response surface method, and the optimal denitrification process conditions were predicted and determined by a regression equation that is, the denitrification rate of SAD was 99.98% at the reaction time of 263 min, reaction temperature of 95 ℃ and concentration of 6.5 wt.%. Furthermore, the content of Al2O3 in SAD was successfully elevated to 98.43% through the reaction carried out in a 10 wt.% NaOH solution system at the controlled temperature of 90 °C for 5 h. It was summarized that the wet treatment methodology can efficiently eliminate aluminum nitride (AlN) from SAD and heighten the Al2O3 grade to meet metallurgical standards. This research is expected to eliminate the adverse impact of SAD on the environment and its safety risks, and provide an innovative method for the sustainable resource utilization of SAD.

Funder

Shanghai Science and Technology Innovation Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3