Improving air pollutant prediction in Henan Province, China, by enhancing the concentration prediction accuracy using autocorrelation errors and an Informer deep learning model

Author:

Cai Kun,Zhang Xusheng,Zhang Ming,Ge Qiang,Li Shenshen,Qiao Baojun,Liu Yang

Abstract

AbstractAir pollution is an important issue affecting sustainable development in China, and accurate air quality prediction has become an important means of air pollution control. At present, traditional methods, such as deterministic and statistical approaches, have large prediction errors and cannot provide effective information to prevent the negative effects of air pollution. Therefore, few existing methods could obtain accurate air pollutant time series predictions. To this end, a deep learning-based air pollutant prediction method, namely, the autocorrelation error-Informer (AE-Informer) model, is proposed in this study. The model implements the AE based on the Informer model. The AE-Informer model is used to predict the hourly concentrations of multiple air pollutants, including PM10, PM2.5, NO2, and O3. The experimental results show that the mean absolute error (MAE) and root mean square error (RMSE) values of AE-Informer in multivariate prediction are 3% less than those of the Informer model; thus, the prediction error is effectively reduced. In addition, a stacking ensemble model is proposed to supplement the missing air pollutant time series data. This study uses Henan Province in China as an example to test the validity of the proposed methodology.

Funder

National Natural Science Foundation of China

Open Foundation of Key Laboratory of Ecological Environment Protection of Space Information Application of Henan

Key Research Projects of Henan Higher Education Institutions

Shenzhen Special Foundation of Central Government to Guide Local Science & Technology Development

Major Project of Science and Technology of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3